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ABSTRACT 
 
We analyze the relationship between economic development and energy consumption in the context of 
climate change mitigation. The main contribution of this work is to compare estimates of energy thresholds 25 
with output projections of per capita final energy supply from a group of integrated assessment models 
(IAMs). Scenarios project that reductions of carbon emissions in developing countries will be achieved not 
only by means of decreasing the carbon intensity, but also by making a significant break with the 
historically observed relationship between energy use and economic growth. We discuss the feasibility of 
achieving, on time scales acceptable for developing countries, both decarbonization and the needed 30 
structural changes or efficiency improvements, concluding that the decreases in energy consumption 
implied in numerous mitigation scenarios are unlikely to be achieved without endangering sustainable 
development objectives, such as universal energy access.  To underscore the importance of basic energy 
needs also in the future, the role of infrastructure is highlighted, exemplarily looking at steel and cement. 
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1 Introduction 
 
With the publication of the United Nations Development Program report, “Our Common 
Future” in 1987 (WCED 1987), impetus was given to the world community to address in 
an integrated manner the interlinked challenges of environmental degradation and 5 
sustainable development.  In many ways it is the current world energy system that is at 
the nexus of these two issues. On the one hand – even though not incorporated directly in 
the Millennium Development Goals (MDG) – energy is undoubtedly essential for human 
development (GNESD, 2007). On the other hand, supply of energy in the past has been 
strongly connected to the combustion of fossil fuels and emission of GHG. From a 10 
developing country perspective, it is essential to understand how acceptable development 
levels can be reached; at the same time the necessity of leap-frogging unsustainable 
development pathways that have been witnessed by developed countries in the past is 
highly obvious (World Bank, 2010).  
 15 
Incorporating climate change mitigation into the discussion of sustainable development 
and requirements for energy system transformation implies a need for analyzing various 
scenarios for future greenhouse-gas emissions pathways. To this end, integrated 
assessment models (IAMs) project future emissions, given a set of assumptions about 
population, economic growth and technological progress, starting with data about the 20 
current state and past trends in the energy system, and allow comparisons between 
baseline scenarios designated as Business-As-Usual (BAU) and those in which climate 
mitigation policies are assumed (POL). 
 
A broad range of studies is available in which mitigation costs in terms of foregone GDP 25 
or consumption1 are evaluated under different circumstances (e.g. Edenhofer et al., 2006, 
Weyant et al., 2006, Clarke et al., 2009, Edenhofer et al., 2010, Luderer et al., 2011a). 
Generally, macro-economic costs are found to be moderate in a first-best world with full 
techno-economic flexibility. This finding crucially depends on the ambitiousness of the 
climate target, assumed technological change, availability of technologies and the starting 30 
point of global mitigation efforts.  
 
Analyses by IAMs have been at the heart of recent IPCC reports as for example the 
Fourth Assessment Report (AR4) (Fisher et al., 2007) or the Special Report on 
Renewable Energy Sources and Climate Change Mitigation (SRREN) (Fischedick et al., 35 
2011) and will continue to play an important role in the Fifth  Assessment Report (e.g. 
Kriegler et al., 2012). Given the central role of IPCC assessments of published literature 
for international climate policy negotiations, it is important that IAMs provide robust 
estimates of future mitigation costs and transition pathways. 
 40 
When evaluating possibilities to cut and avoid carbon emissions in the future two options 
are in the focus of the current debate; cutting carbon-intensity by promoting carbon-free 

                                                 
1 IAMs start only slowly to take broader aspects of development and sustainability into account, see e.g. 
Urban et al., 2007, van Vuuren et al., 2007, Bollen et al., 2009, van Ruijven et al., 2008.  
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technologies like renewable energy technologies, nuclear energy or CCS or improving 
the energy intensity, either by higher levels of efficiency levels or structural change.  
 
Past studies have critically assessed the robustness of scenario analyses with respect to 
assumed energy- and carbon intensity improvements. Pielke et al. (2008) argue that 5 
scenarios assessed for AR4 systematically overestimate the role of energy intensity 
improvements in the future and at the same time underestimate the carbonization 
dynamics of newly industrializing countries, like China or India.  
 
In this paper we assess the role of energy consumption in scenarios of the future, 10 
particularly highlighting the essential role of energy in development processes. We start 
by evaluating the role of energy for human development by drawing on statistical 
analysis as well as existing literature. We conjecture that economic development very 
likely requires a minimum level of energy.  
 15 
We continue by asking whether energy consumption, as calculated in IAMs, is consistent 
with how energy has been related to development in the past2. We synthesize our insights 
from the analysis of historic patterns with the output projections of integrated assessment 
models (IAMs), particularly the ReMIND-R model, under both BAU and climate 
mitigation scenarios. We evaluate how the relationship between energy use and economic 20 
growth is represented in these models, particularly for developing regions.  
 
In order to better understand the nature of energy requirements in growth processes, we 
exemplarily look at the role of infrastructure and related energy requirements. By 
applying an econometric analysis focusing on the role of infrastructure, we aim to 25 
provide a rough estimate of a lower bound of minimum requirements for energy use in 
the future. 
 
Our analysis raises doubts that the role of energy in development processes is adequately 
considered in IAMs. We show examples in which multiple technological pathways are 30 
able to achieve a given global mitigation target according to the output of an IAM, but 
where the application of additional sustainability criteria, i.e. energy access tends to call 
into question the feasibility of these mitigation pathways. These results may serve as a 
starting point for a discussion about the appeal of some of these pathways, in particular to 
developing countries. Therefore, we conclude with a discussion of our results with 35 
respect to their implications for future modeling exercises as well as climate policy, 
arguing that additional goals for sustainable development, such as access to energy, are 
closely related to economic development and hence must be included in the analysis of 
energy system transformation pathways.  
 40 

2 Energy and Human Development 
 
                                                 
2 Please note that IAMs usually report consumption or GDP as development indicators and do not take 
broader concepts of development into account. We view GDP as at best a rough proxy since alternatives are 
not available in the IAM literature.  
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Is there a minimal amount of energy necessary to allow for economic development? We 
consider here some bottom-up investigations of energy consumption patterns. A first, 
qualitative consideration would be that households must have access to some forms of 
energy for cooking food, and depending on the climatic zone, to energy for heating their 
homes.  Beyond this ‘direct’ energy use, there are also ‘indirect’ needs for energy, e.g. to 5 
produce consumer goods or build up infrastructure (such as buildings and roads), which 
we will discuss in more detail in section 4 of this paper.  
 
One of the earlier works to look at this issue is that of Krugman and Goldemberg (1983) 
in which they determine a threshold of ~45 GJ/year for development to “acceptable” 10 
levels for Latin America, Africa and Asia.  Their results come from bottom-up data, and 
include both commercial and non-commercial energy sources. A later paper by 
Goldemberg et al. (1985) attempts to determine energy needs for the future, given the 
ability to access an array of technologies to enhance energy efficiency. Under those 
conditions, the authors arrive at a figure of approximately 1 kW as the rate of minimum 15 
average energy consumption (equivalent to ~31 GJ/year), considering both direct and 
indirect energy consumption, using Western Europe and Japan in the early 1970s as the 
target level for acceptable development.  Considering only rural households, Pereira et al. 
(2011) set a level of ~10 GJ/year of direct energy consumption as a poverty threshold, 
using surveys of rural Brazilian households. This is not necessarily in conflict with the 20 
other references above, since indirect energy consumption can represent 50% or more of 
total energy, as shown by input-output analysis for Indian households, where similar 
primary energy consumption levels were found (Pachauri and Spreng 2002). In addition, 
the  goal is not to set a threshold for emerging from a state of absolute poverty, but rather 
to  define how much energy is needed to achieve high or very high development levels, 25 
e.g. in terms of the Human Development Index (HDI).  
 
With respect to sustained economic development, it is clear that monitoring GDP growth 
rates alone is an insufficient condition for ensuring development. Broader measures of 
social and economic development such as the HDI3, although not without conceptual 30 
difficulties (see for example Neumayer, 2001; Böhringer and Jochem, 2007; Fleurbaey, 
2009), provide a first step toward a more comprehensive evaluation.  
 
In Fig. 1 we show the correlation between the Human Development Index (HDI) and 
energy use (here given in final energy consumption per capita in GJ/year). The United 35 
Nations Development Program (UNDP) defines four levels of development for the HDI: 
low (<0.475); medium (0.475 – 0.670); high (0.670 – 0.785); very high (0.785 – 1.0) 
(UNDP 2011). These levels are indicated by horizontal lines in Fig. 1. 
 
                                                 
3 The HDI is defined as a geometric mean of three different components of human well-being: life 
expectancy, education, and income.The indices are relative and normalized, such that for each component 
the individual country component value is calculated with respect to the minimum value in the sample, then 
normalized to the maximum difference found in the sample. The education dimension is in turn made up of 
two parts, one being the mean years of schooling, the other being the expected years of schooling. A 
country potentially having the highest score across all three dimensions would have an HDI value of 1.0. 
The income dimension of HDI is included logarithmically in the index, acknowledging the decreasing 
return to well-being with increasing income. 
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Figure 1: Correlation of (final) energy use (IEA 2010b) and HDI (UNDP 2010) in 2005 for 144 
countries, together with development over the period 1980-2005 for selected countries in time steps of 
five years. Horizontal lines indicate the separation between “low”, “medium”, “high” and “very 
high” development categories.  Vertical lines indicate per capita final energy levels of 42 GJ (1 toe) 5 
per year and 100 GJ per year. 
 
For our purposes, the interesting feature is the correlation between HDI and per capita 
final energy consumption for countries in different stages of development, as shown in 
Figure 1. The trend of increasing HDI being correlated with increasing energy use 10 
saturates at a fairly low level. For those societies in which per capita energy use is less 
than about 42 GJ/year, HDI is very likely to be below the “high” level and certain to be 
below the “very high” level. On the other hand, countries with per capita final energy use 
of  >100 GJ/year are likely to have a “very high” HDI (as denoted by the second vertical 
line in Fig. 1) and certain to be at least in the “high” HDI category. Only few exceptions 15 
exist (next to Costa Rica, shown here explicitly, also Hong Kong and Malta), but they all 
operate in very particular environments. A first conclusion is that we should be able to 
make judgements as to the aggregate energy access component of sustainable 
development for developing countries, all else being equal. Another interesting point that 
comes from Figure 1 is that countries having roughly the same level of  economic 20 
development in the “high” and “very high” ranges as measured by HDI can have per 
capita energy consumption that varies by a factor of nearly ten (Martinez and Ebenhack, 
2010).  
 
In this respect we can show that results from Steinberger and Roberts (2010) evaluating 25 
the relationship between primary energy and HDI can also be replicated when looking at 
the actual energy consumption, i.e. final energy supply. It is obvious that a given level of 
minimum energy requirements for a sufficiently high development level today is not 
necessarily stable, i.e. it could be decreased in the future. Extrapolating threshold 
functions for primary energy observations of the past, Steinberger and Roberts (2010) 30 
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find minimum future primary energy levels for high development levels to decrease – a 
result that can also be expected when looking at final energy levels. It is however 
questionable whether and to what extent historical trends can be expected to continue in 
the future. In order to shed light in this question, it must  be better understood how 
thresholds can be explained. Infrastructure, which we discuss in section 4 might provide 5 
one potential explanation for the existence of thresholds.  

3 Energy, development and scenarios of the future 
In the following we assess a broader set of IAMs with respect to the question how growth 
and final energy supply are projected to develop in future scenarios with and without 
mitigation of climate change. As they are able to represent complex interrelations 10 
between the energy, socio-economic and climate systems, IAMs are a powerful tool for 
describing how growth and energy supply develop in the future. We will compare our 
hypothesis as formulated and backed by bottom-up analysis in Section 2  with top-down 
model results, before we discuss the implications of the results for (a) climate policy and 
(b) the consistency of IAM results in general. As IAMs usually do not take broader 15 
concepts of development into account, we will refer to GDP or consumption per capita in 
the following, acknowledging the difficulties that are connected to this indicator. 
However, particular for low income levels, GDP per capita is strongly correlated with the 
HDI (Islam, 1995).  

3.1 Energy and development from a model perspective 20 
Using the empirical correlations above as a basis, and recognizing that countries or 
regions in different stages of development will have differing goals for energy use, we 
compare final energy consumption under baseline and climate-policy scenarios for 
several different groups of countries, based on scenarios used by two recent model 
comparison exercises, ADAM (Edenhofer et al. 2010) and RECIPE (Luderer et al. 25 
2011a). In that sense we can capture a broad range of different model philosophies and 
assumptions regarding model inputs, e.g. with respect to the role of technological change. 
Edenhofer et al. (2010), Luderer et al. (2011a), Knopf et al. (2009), Tavoni et al. (2011) 
and Jakob et al. (2011) give a more detailed description of the assessment framework. A 
variety of models has been used in these exercises, i.e. ReMIND-R (Leimbach et al., 30 
2010; Bauer et al., 2011), MERGE-ETL (Kypreos and Bahn, 2003; Kypreos, 2005), 
IMAGE/TIMER (Bouwman et al., 2006; van Vuuren et al., 2006), POLES (European 
Commission, 1996), IMACLIM-R (Sassi et al., 2009; Waisman et al., 2011) and WITCH 
(Bosetti et al., 2006; DeCian et al., 2011). We organize available scenarios into clusters 
based on climate targets as defined by the IPCC (2007): baseline scenarios with 35 
atmospheric GHG concentrations higher than 710 ppm CO2-eq; so-called Category 3 & 4 
scenarios with equilibrium atmospheric GHG concentrations between 535 and 710 ppm 
CO2-eq; and Category 1&2 scenarios, which result in concentrations lower than 535 ppm 
CO2-eq4.  
 40 

                                                 
4 In the IPCC AR4 stabilization categories are defined as follows: I: 445-490 ppm CO2 eq; II: 450 – 535 
ppm CO2 eq.; III: 535 – 590 ppm CO2 eq; IV: 590 – 710 ppm CO2 eq; V: 710 – 855 ppm CO2 eq; VI: 855 – 
1130 ppm CO2 eq.  
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The results shown in Figure 2 represent the output of six IAMs for business-as-usual 
(BAU) and for two categories of climate policy scenarios. The boxes and bars represent 
the range of values from the different model runs, with the median of all model runs 
given by a horizontal bar, and the ends of the bars indicating the extreme values of model 
output. The boxes correspond to the interquartile range (25th – 75th percentile). We look 5 
at two points in time, 2030 (black boxes) and 2050 (red boxes) and different regions. The 
left-hand column shows the aggregate of all Non-Annex I5 countries (a), China (b) and 
India (c), while the column on the right shows results for all Annex I countries (d), and 
for the US (e) and Europe (f). Note that across the different models the aggregation into 
regions is not necessarily harmonized and slight variations might occur.  10 
 
a) Non-Annex I countries 

 

d) Annex I countries 

 
b) China 

 

e) USA 

 
c) India f) Europe 

                                                 
5 We refer to Annex I of the United Nation’s Framework Convention on Climate Change (UNFCCC), 
which include the industrialized countries that were members of the OECD (Organization for Economic 
Co-operation and Development) in 1992, plus countries with economies in transition, including the Russian 
Federation, the Baltic States, and several Central and Eastern European States. 
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Figure 2: Final energy use per capita per year (in GJ) in all Non Annex I countries (a), all Annex I 
countries (b), China (c), the US (d), India (e) and Europe (f) for different scenario categories, i.e. 
baseline scenarios, category 3 and 4 scenarios and low stabilization (category 1&2) scenarios. The 
black boxes access data for 2030, the red boxes assess data for 2050. The thick black line corresponds 
to the median, the boxes correspond to the interquartile range (25th – 75th percentile) and the 5 
whiskers correspond to the total range across all reviewed scenarios. 
 
From Figure 2 we can derive three major implications: First, we note a general trend that 
per capita final energy consumption decreases significantly in the policy cases with 
respect to the BAU case for all regions. Second, while in the baseline scenarios, for Non-10 
Annex I countries the 40 GJ/year threshold seems to be within reach and for China it is 
already crossed in 2030 for most models6, the aggregate of Non-Annex I countries 
remains far below that threshold in mitigation scenarios. There is a slight trend toward 
increasing energy consumption between 2030 and 2050 in the policy scenarios in all 
regions; however, it does not catch up to levels that are reached without climate 15 
mitigation. While in Annex I countries including Europe and the USA, final energy 
consumption per capita is significantly lower in low stabilization scenarios, the 
differences between category 3&4 and category 1&2 scenarios can be neglected in Non-
Annex I countries. Hence, the level of ambition in climate stabilization does not seem to 
make a major difference for developing countries in this respect. Third, relative 20 
reductions between baseline and policy cases are slightly higher in Non-Annex I 
countries (20 – 30% lower FE per capita levels in policy cases) compared to Annex I 
countries (12 – 25% lower FE per capita levels in policy cases), i.e., despite much lower 
per capita FE consumption levels, models tend to project energy demand in developing 
countries to be more elastic than in developed countries. 25 
 
Figure 3 shows annual changes in energy- and carbon intensity levels in differently 
ambitious mitigation scenarios in the period form 2010 – 2030. When looking at final 
energy- and carbon intensity reductions in mitigation scenarios compared to BAU 
scenarios (Figure 3a and b), non-Annex I countries show at least as high reductions in 30 
energy intensity as Annex I countries, in both, low (category 1 & 2) and medium 
(category 3&4) stabilization targets.   
 

                                                 
6 Analysis of recent data suggests that China has crossed the threshold already.  
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a) Change relative to BAU, 2010 – 2030, 
Cat 1&2 

b) Change relative to BAU, 2010 – 2030, 
Cat 3&4 

 
c) Absolute change 2010 - 2030, Cat 1&2 

 

d) Absolute change 2010 – 2030, Cat 
3&4

 
Figure 3: Annual change in carbon intensity of energy and energy intensity of GDP for the period 
2010 to 2030 in scenarios of the future for Annex I and non-Annex I countries for category 1&2 (a) 
and category 3&4 (b) scenarios as well as changes compared to the respective BAU scenarios for 
category 1&2 (c) and category 3&4 (d) scenarios in percentage points.  
 5 
When turning to absolute reduction rates (see Figure 3c and d) annual reduction rates of 
final energy intensity of GDP are systematically higher in developing countries than in 
Annex I countries. With respect to carbon intensity, no major differences can be found, 
i.e. annual changes are in a comparable order of magnitude in both income groups. Even 
though non-Annex I countries start from higher initial values of energy intensity the 10 
result is remarkable, as those countries can be expected to undergo structural changes that 
have been energy intensive in the past. For instance, for low-income countries economic 
growth goes hand in hand with an increasing share of industry in total production, which 
in general displays higher energy intensity than e.g. agriculture or the service sector 
(Schäfer, 2005). Hence, structural economic change towards more energy-intensive 15 
activities could – at least to some extent – counterbalance decreases in economy-wide 
energy intensity triggered by efficiency improvements (see e.g. Zhao et al., 2010 for the 
case of China).   
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The results from the model comparisons can be interpreted in different ways: On the one 
hand, decreasing absolute FE levels as well as high energy intensity reductions could 
simply highlight the need for improved energy intensity across all countries and income 
groups. However, in the light of our results in Section 2 they also could hint at a possible 
overestimation of realistic energy intensity improvements in developing countries. Even 5 
though IAMs are generally designed to study longer-term changes, it is important to 
evaluate shorter-term trends and potential for major breaks with the past that are 
important for questions related to development. To better understand these initial results, 
we further examine results of the ReMIND-R7 model in higher temporal and regional 
detail8.  10 
 
Figure 4 shows per capita GDP in 2005 US$ as a function of final energy consumption 
per capita in GJ9 for four different scenarios, which represent climate targets of varying 
ambition. These targets are implemented by using carbon taxes, i.e. one scenario where 
no carbon tax is implied, defined as the business as usual scenario (BAU), and three 15 
scenarios with initial tax levels of $10, $30 and $50 per ton of carbon, which all increase 
by 5% per annum from 2010 on in order to match the targeted levels of ambition. In our 
analysis we look at four developing regions, i.e. Latin America (LAM), Sub-Sahara 
Africa (without South-Africa), China (CHN) and India and two developed regions 
(Europe (EUR) and USA) with the aim of determining whether and how historic trends of 20 
energy use and welfare are reflected in our scenarios.   
 
First, in the BAU scenario we find that historic trends are more or less reproduced for 
developed countries and China, which already crossed the threshold of 40 GJ per capita 
in 2005. For developing countries that have not crossed the threshold in 2005, historic 25 
trends are basically reproduced, i.e. increasing welfare is associated with increasing 
energy consumption if a certain threshold is crossed. Energy levels per capita are 
however lower for corresponding per capita GDP values, which could well be explained 
by technological improvements and leapfrogging very energy-intensive processes.  
 30 
a) BAU (Category VI) b) Medium stabilization (Category III*) 

                                                 
7 ReMIND-R couples a Ramsey-type economic growth model with a detailed bottom-up energy system 
model and a climate model. Please see http://www.pik-potsdam.de/research/sustainable-
solutions/models/remind/REMIND_Description_June2010_final.pdf for a detailed model description.  
8 These data are part of the set of scenarios prepared for the Asia Modeling Exercise (Luderer et al. 2011b). 
9 GDP per capita is reported on a logarithmic scale in order to make results roughly comparable to Figure 1, 
where GDP per capita goes logarithmical into the calculation of the HDI.   
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c) Low stabilization (Category II*) d) Very low stabilization (Category I*) 

 
Figure 4: GDP per capita over final energy per capita for selected regions. Circles indicate historic 
data (based on Penn World Tables 2009), while crosses indicate ReMIND-R model results for 
different IPCC stabilization categories. *Stabilization scenarios shown here are calculated by using 
scenarios with progressive carbon taxes increasing by 5% per annum from 2010 with initial levels of 
US $10, US $30 and US $50, respectively.  5 
 
Second, if the stabilization level remains relatively moderate, developing countries do not 
seem to show fundamentally different behavior than in the BAU case. On the other hand, 
in developed countries efficiency improvements are realized and energy consumption per 
GDP decreases significantly.  10 
 
Third, for increasingly ambitious stabilization targets developing countries show 
significantly different behavior. For all developing regions but China, we can observe a 
decisive break with the historic trends. Final energy levels remain practically constant 
despite economic development. In some regions (Sub Saharan Africa (AFR), India) they 15 
even decrease initially. In India, which – in terms of GDP per capita - will reach 
development levels comparable to those of Europe today in the year 2100, FE per capita 



 

 12

levels will be around 25 GJ per capita, which is only slightly above today’s levels. Quite 
importantly, the per capita final energy consumption will never increase above this level 
during the entire century. Comparable patterns can be found in AFR and Latin America 
(LAM). At the same time, the EU27 and the US – despite reducing final energy per capita 
consumption significantly - are still seen to be at levels above 100 (EU27) and 150 (USA) 5 
GJ per capita in the year 210010.  
 
To sum up, the above analysis of the IAM data indicates that climate policy is likely to 
reduce average per capita energy consumption in developing countries to a level that 
seems to be difficult to be combined with critical thresholds for development identified in 10 
Section 2. Particularly in ambitious mitigation scenarios, IAMs project energy 
consumption to decouple from economic growth in developing countries, suggesting that 
potentials for energy intensity improvements in developing countries are (at least 
implicitly) assumed to be higher than in developed countries. It is important to 
understand that these results indicate a radical break of historic observations. In the light 15 
of climate change mitigation, radical breaks with historic development patterns are surely 
needed. With respect to carbon intensity and the decarbonization of the energy system, 
IAMs generally put a lot of emphasis on possible future transformations, e.g. by a 
detailed techno-economic description of energy systems. However, considerably less 
attention is given to the demand side in general, and the role of energy access for 20 
development processes in particular. Our results indicate that it deserves more attention 
for future modeling efforts.   

4. Energy thresholds and the role of infrastructure 
 
In sections 2 and 3 of this paper, we argue that there is a minimum level of energy needed 25 
for reaching high or very high development levels. We find that IAMs do not take these 
considerations into account. However, one could argue that future efficiency 
improvements will lower the amount necessary in the future (see for example Steinberger 
and Roberts, 2010). Therefore it is important to understand why we observe minimum 
levels of energy consumption in the past.  30 
 
If we think of development beyond fulfilling basic needs, energy is also needed for the 
construction of infrastructure, including the use of cement and steel for buildings, 
railways and roads, electricity grids, etc., all of which come with a specific energy 
demand. The important role of infrastructure in development processes in general is well 35 
known in the literature, generally assuming a positive impact of infrastructure investment 
on economic development and growth (Gramlich, 1994). Different channels are identified 
how investments in public capital, i.e. infrastructure could impact growth (for a detailed 
review see Agénor and Moreno-Dodson, 2006). Most importantly, Aschauer (1989) - 
followed by many others - was the first to hint on the positive effects of infrastructure 40 
investments on other production inputs, as for example labor or the private capital stock. 
Infrastructure investments can thus increase the marginal productivity of private 
investments. Additionally, Calderón and Servén (2004) also highlight the positive effects 

                                                 
10 As in most IAMs, population is exogenously given in ReMIND-R.  
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of infrastructure investments on the reduction of income inequalities, particularly in 
developing countries.  
 
In this sub-section we determine the role of infrastructure in development processes of 
the past, particularly focusing on the energy demand that comes with investments in 5 
infrastructure. We focus on the production11 of cement and steel as major determinants of 
energy-use for infrastructure purposes12. Our starting hypothesis is that infrastructure 
production increases with increasing levels of income, while it might eventually saturate 
once a certain capital stock has been built up. Thus, our hypothesis is that in developing 
countries inputs required for infrastructure increase with economic growth. We can give 10 
empirical confirmation of this hypothesis, yielding support for infrastructure uptake being 
an important component of an energy threshold. However, we keep the econometric part 
relatively simple in order to be able to link econometric patterns of the past to the output 
of the integrated assessment model ReMIND-R in a second step. Hence, we can compare 
potential energy demand for infrastructure of the future with energy consumption patterns 15 
calculated by the model.  
 

4.1 Energy for infrastructure in the past 
 
Data 20 
We aggregate all data13 into 11 regions as defined in the ReMIND-R model, in order to 
be able to use results from the historical analysis to estimate future energy demand 
resulting from infrastructure. Table 1 gives a more detailed description of aggregated 
regions. We further cluster these regions into developed (OECD) and developing 
countries. However, we exclude the regions ROW and RUS from these two clusters: For 25 
ROW the ReMIND region is composed of developed and developing countries, while for 
RUS historical data are not sufficiently available14.  
 

Model region Countries15 
AFR Sub-Saharan Africa w/o South Africa 
CHN China 
EUR EU27 countries 
IND India 
JPN Japan 

                                                 
11 Using production instead of consumption data might be a weakness of the analysis; it is however 
necessary in order to link econometric results to model output in the next step.  
12 Note that other inputs might become more important for higher incomes, which is however not regarded 
here.  
13 Summary statistics for all data used can be found in the Appendix.  
14 Note that with respect to steel production not every country produces steel, thus an aggregation of 
countries is useful. A similar analysis with disaggregated regions holds qualitatively similar results for 
cement.  
15 In the remainder of the paper we aggregate these regions into “OECD” countries and “developing 
countries” as follows: OECD countries are EUR, JPN and USA, while all other regions, but RUS and ROW 
are aggregated as “developing” countries. Note that singular countries in this group (i.e. South Korea and 
Mexico) are actually OECD countries.  
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LAM All American countries but Canada and the US 
MEA North Africa, Middle Eastern and Arab Gulf 

Countries, Resource exporting countries of 
FSU, Pakistan 

OAS South East Asia, both Koreas, Mongolia, Nepal, 
Afghanistan 

ROW Non-EU27 European states w/o Russia, 
Australia, Canada, New Zealand and South 
Africa 

RUS Russia 
USA USA 

Table 1: Regions as defined in ReMIND-R and corresponding world regions 
 
For macro-economic indicators we use data from Penn World tables 6.3 (Heston et al. 
2009). Capital investments can be calculated from Heston et al. (2009) based on GDP (in 
MER). As the database on the amount of cement produced in each country is rather weak, 5 
we use production-based emissions data caused by cement (Boden et al. 2011) and use 
factors determined by the chemical processes involved to calculate cement production 
and consequently estimate the energy consumed in the process. This is possible because 
one step in the cement production process is the conversion of limestone to lime in the 
production of clinker, where CO2 is emitted in a chemical reaction, i.e. 10 

23 COCaOCaCO +⎯→⎯ . Thus, cement production can directly be calculated from 
emissions, using a constant of 0.5 t CO2/t cement (IPCC 2000, USBM, 2009). For steel 
we use country disaggregated production data from IISI (2011) for the years 1980 – 2005 
available for all steel producing countries. 
 15 
Empirical method 
A simple econometric model is used to estimate the role of infrastructure (INF), i.e. 
cement and steel in development processes.  Demand for cement or steel is expected to 
depend on the population (POP) of a country or region, as well as on economic 
development (ECON). As a proxy for economic development both per-capita GDP and 20 
per-capita capital investments (INV) are used, presuming that the latter are the decisive 
part of GDP driving the demand for infrastructure. A panel regression is performed 
between population, an economic development parameter (GDP or capital investments) 
and the infrastructure parameter (cement or steel production).  A fixed-effects estimator is 
used to estimate the following equation: 25 
 

( ) ( ) ( ) jtjtjjtjjjt POPECONINF εγβα +++= lnlnln   ,    (1) 
 
where αj are region-specific parameters constant in time and the error term εjt is assumed 
to be identically and independently distributed (iid). j specifies the respective region, for 30 
which country specific historic data series INF, ECON and POP are aggregated.   Eqn. 
(1) is estimated separately for OECD countries and developing countries to allow for 
different functional relationships for these two country groups. The logarithmic 
transformation of the variables is used, with the respective coefficients therefore denoting 
elasticities, (i.e. the percentage change of the dependent variable upon a one percent 35 
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change of the explanatory variables, ceteris paribus). By means of a student t-test we 
assess whether the coefficients are individually significantly different from zero. 
 
Results 
Qualitatively the results for steel and cement production inputs are broadly similar, as 5 
summarized in Tables 2 and 3. However, we note important differences between 
developing and developed countries. 
 
For developing countries the estimated coefficients are all statistically significant on the 
1%-level. For steel, about 40% of the observed variation is explained by the independent 10 
variables, as indicated by the R2-within (which excludes the explanatory power of the 
country-specific fixed effects), while for cement it exceeds 80%16. The estimated 
elasticity of steel production with respect to capital and investments and per-capita GDP 
are about 0.4 and 0.7, respectively, while the elasticity with respect to population ranges 
between 1.4 and 1.6, depending on model specification. For cement, the former 15 
elasticities are about 0.5 and 0.7, respectively, and the latter are 1.9 and 2. 
 
For developed countries, the estimated elasticities for steel are considerably lower than 
for developing countries, in the order of 0.1 for both per-capita investments and per-
capita GDP, respectively. Both are statistically significant at the 5% confidence level. For 20 
cement, however, the coefficients of GDP and INV are not statistically different from 
zero. Finally, we find insignificant coefficients on population size for steel production, 
but coefficients which are significant on the 1% level for cement, with values between 
1.2 and 1.5. These observations suggest that for developed countries, steel production is 
more strongly affected by per-capita GDP and capital investments, while for cement the 25 
population size is of higher importance.  
 
 

Steel Developing countries OECD countries 

βinv  0.4435*** 
(4.7)  0.109** 

(2.54) 

βGDP 0.7051*** 
(5.77)  0.0969** 

(2.09)  

γ 1.4318*** 
(5.68) 

1.6423*** 
(6.58) 

0.3927 
(1.41) 

0.2926 
(0.84) 

α -9.1858*** 
(-2.76) 

-11.2636*** 
(-3.34) 

6.6067* 
(1.95) 

8.5324** 
(2.36) 

R² 0.4185 0.3852 0.2319 0.2523 
t-values in parenthesis 

*** p<0.01, ** p<0.05, *p<0.1  30 
Table 2: Relationship between capital investment or GDP, respectively, population and steel 
production in OECD countries and developing countries in the years 1980 – 2005. Note that data are 
aggregated to match the regional fit of the ReMIND-R model.  α denotes the average of country fixed 
effects for OECD and developing countries, respectively. The reported R2 is the R2-within. 

                                                 
16 This observation could for instance be due to the fact that steel is more heavily traded than cement, such 
that the latter’s production is more closely aligned to socio-economic development. 
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Cement Developing Countries OECD Countries 

βinv  0.5178*** 
(12.46)  0.0059 

(0.14) 

βGDP 0.6809*** 
(12.16)  -0.0644 

(-1.41)  

γ  1.8685*** 
(16.19) 

1.9753*** 
(17.96) 

1.5216*** 
(5.55) 

1.2125*** 
(4.1) 

α  -16.1634*** 
(-10.58) 

-16.7480*** 
(-11.29) 

-9.8383*** 
(-2.94) 

-6.1233** 
(-1.68) 

R² 0.8163 0.8205 0.3803 0.3636 
t-values in parenthesis 

*** p<0.01, ** p<0.05, *p<0.1  
Table 3: Relationship between capital investment or GDP, respectively, population and cement 
production in OECD countries and developing countries in the years 1980 – 2005 Note that data are 5 
aggregated to match the regional fit of the ReMIND-R model. α denotes the average of country fixed 
effects for OECD and developing countries, respectively. The reported R2 is the R2-within. 
 
These results support our hypothesis. In developing economies, higher per-capita GDP 
and capital investments are closely correlated with increased production of steel and 10 
cement. The low or statistically insignificant coefficients found for OECD countries 
suggest that once a certain level of development is reached, GDP or capital investments 
have a considerably less pronounced influence on these infrastructure-related variables. 
This finding supports the hypothesis of an energy threshold, as infrastructure inputs must 
first be provided in order to reach a decent level of development. Thus, a decreasing 15 
threshold would imply improvements in the supply of infrastructure inputs.  
 
In this section we have presented evidence to support our hypothesis that infrastructure 
uptake is one explanatory element of an energy threshold. Keeping in mind that the goal 
of SD should go beyond simply enabling a subsistence level of development, energy 20 
consumption will occur not only at the level of individual households, but also in the 
form of infrastructure accumulation.  The next step is to compare the indicated minimal 
levels of energy consumption with projections arising from IAMs. 

4.2 Infrastructure in scenarios of the future 
As indicated in Section 4.1 we use infrastructure inputs to bolster the threshold 25 
hypothesis. Based on our results from the historical analysis we estimate the future 
energy demand for steel and cement production using state-of the art technology 
estimates as well as projections for the future from the literature as well as scenario 
results from the ReMIND-R model (Leimbach et al., 2010; Bauer et al., 2011).  
 30 
To estimate the combined energy demand for cement and steel we use model output for 
capital investment from the ReMIND-R model and use the estimates from Section 4.1. 
together with country-specific fixed effects (reported in the Appendix) to translate these 
results into steel and cement production. For developing countries we assume a switch to 
OECD values once a developing country reaches levels of affluence comparable to 35 
developed countries in 1980. We assume that best practice technologies today use on 
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average 5 GJ/t (de Vries et al. 2006, Taylor et al. 2006, Worrell et al. 2000, Worrell and 
Galitsky 2008). Theoretically this can be lowered to the thermodynamic limit, which is 
estimated to be around 1.76 GJ/t (Taylor et al. 2006)17. We use an estimate of current best 
practice energy use for the production of steel of 18 GJ/t (IISI 2011), while we assume 
the minimum achievable energy intensity to be 2.5 GJ/t following long run estimations 5 
from de Beer et al. (1998).  
 
Figure 5 shows results for the relation between cement and steel production and capital 
investments both historically (shown in black) and the projections derived using the 
coefficients of our econometric estimates (shown in blue) until the year 2050 for different 10 
regions. Historical correlations between investments and cement and steel, respectively, 
are continued in the future scenario with some minor differentiations between regions 
that can also be observed in historic data. As an interesting side result, we find an implicit 
level of per capita steel and cement production in developed societies that ranges between 
0.4 and 2 t for cement18 and 0.3 and 1 t for steel.  15 
 
a) Cement 

 

b) Steel 

Figure 5: Correlation between capital investments for a) cement and b) steel production on a double 
log scale, separated by different regions for historic data from 1980-2005 (black), together with 
scenario results from 2005 to 2050 (blue). Note that the regional aggregation follows the regions that 
are represented in the ReMIND model.  20 
 
We can use these results for the production of steel and cement to project the energy 
consumption required in the future. Implicitly we assume that cement and steel will not 
be substituted by other inputs of production in the future. The lower bounds of the ranges 
shown in Figure 6 are calculated using the minimum achievable energy input for steel 25 
and cement (i.e. the thermodynamic limits) while the upper bounds are calculated with 

                                                 
17 The value for a ton of cement is likely to be higher, as Taylor et al. (2006) give numbers for clinker 
production. It is important to understand that thermodynamic limits are unlikely to be reached in reality, as 
other constraints (e.g. time) need to be regarded (Spreng, 1993). 
18 Obviously there are large differences between country groups particular with respect to cement 
production. Asian countries have used significantly more cement per capita in their development process 
than European or North-American countries (see also Appendix for more detailed information on cement 
production in selected OECD countries). We presume that differences in urban development patterns and 
types of buildings can explain these differences; a detailed discussion of the phenomenon is however 
beyond the scope of this paper.  
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today’s state of the art technologies’ energy need19. Realistic results in the near future 
will be close to the upper limit of the range, while due to technological progress future 
specific energy consumption from cement and steel can be expected to eventually 
decrease and thus results closer to the lower range become more likely.  
  5 
 
 
 
 
 10 
a) India 

 

b) AFR  

 

c) Other Asia 

 
d) Latin America 

 

e) China 

 
 

f) Japan 

 

Figure 6: Ranges of energy demand for cement and steel production in comparison to FE demand in 
different mitigation scenarios as calculated by the ReMIND model. The upper bound assumes the 
current energy use and the lower bound the thermodynamic limit for future production of cement 
and steel. The projections are results from the econometric model based on capital investment and 
population. The black line indicates energy demand in a ReMIND policy scenario (cat I), while the 15 
dashed lined indicates energy demand in a ReMIND BAU scenario. Note that the regional 
aggregation follows the regions represented in the ReMIND model.  
 
For countries that are currently developing, using historical fits leads to increasing energy 
demand for steel and cement until they reach comparable levels to developed countries 20 
towards 20 GJ per capita without improvements in the production techniques. While for 
developed countries and China, the energy needed for the supply of infrastructure 
accounts for only a small part of the overall energy supply, it makes up a significant share 
for India (a), OAS (c), and LAM (d). For Sub-Saharan Africa (b), we calculate lower 
levels of per capita energy for steel and cement in 2050, however increasing and 25 
converging towards developed country levels with increasing levels of GDP. In any case, 
                                                 
19 For cement we calculate with an energy input of 5 GJ/t for today (de Vries et al. 2006, Taylor et al. 2006, 
Worrell et al. 2000), which theoretically can be lowered 1.76 GJ/t in the future (Taylor et al. 2006). For 
steel production we estimate a current best practice energy use of 18 GJ/t (IISI 2011), which we assume to 
be lowered to 2.5 GJ/t in the future. 
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economic development is expected to go hand in hand with additional energy use for 
infrastructure. For developed countries (here exemplarily shown for Japan, Figure 5f) we 
find that future energy demand for cement and steel ranges between 2 and 20 GJ per 
capita in the year 2050, depending on the energy intensity levels of the future and thus 
remaining roughly at today’s levels.  5 
 
In summary, we can conclude that in the future additional energy will be needed for the 
construction of infrastructure in developing countries. Its magnitude will depend on the 
rate of technological progress, but – at least in the short to medium term – will likely 
exceed the level of final energy per capita that is thought to be needed for fulfilling basic 10 
needs, i.e. 10 GJ per capita. Taken literally, our results for developing countries, 
particularly India, Sub-Saharan Africa, Other Asia and Latin America imply that not 
much – if any – additional final energy would be left for these economies besides energy 
that is needed for steel, cement and fulfilling basic needs on the household level. It should 
be mentioned that for this calculation, we only considered energy needed for steel and 15 
cement production, which is not the only infrastructure that can theoretically be taken 
into account. Energy needed for transportation infrastructure (e.g. bitumen) as well as 
other metals like copper or aluminum would add to the numbers that are presented above. 
This puts into question the consistency of scenario results that foresee substantial 
economic growth in developing regions, while final energy per capita levels stagnate at 20 
today’s levels or even decrease. 

5 Implications for climate policy 
Globally, human-kind is faced by the twin challenges of mitigating climate change and 
overcoming poverty. Despite the urgency of solving the climate problem, mitigation 
policy should not trap developing countries in a state of poverty. At the same time future 25 
development processes should avoid technological lock-ins, e.g. in a carbon-intensive 
infrastructure or energy systems.  
 
When looking at low-stabilization scenarios produced by IAMs, here shown mainly using 
the ReMIND-R model but recognizing that other models give qualitatively similar results 30 
(see Annex B for a comparison of ReMIND-R results with other IAMs), we find that 
historical correlations between economic growth and energy use are discontinued in 
mitigation scenarios, both with respect to a postulated (and observed) energy threshold as 
well as with respect to increasing energy use in the course of development. In model 
results for mitigation scenarios, final energy demand in developing regions (AFR, LAM) 35 
stays approximately at current (low) levels, whereas per capita GDP rises significantly. 
At the same time, developing countries are projected to face higher energy intensity 
improvements than developed countries. At first sight, the model results seem to be either 
not realistic or driven by very strong implicit assumptions. 
 40 
In order to understand the plausibility of model results, the most important question is 
whether developing countries will be able to decouple their growth from energy use and - 
looking at the differences between BAU and policy scenarios – how fast this can be 
achieved. We are rather pessimistic that it is possible for low income countries to develop 
without increasing their level of energy use, given the indicated need for energy to drive 45 
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GDP growth. In addition to energy required to satisfy basic needs at the household level, 
energy is also embedded in the construction of infrastructure when affluence levels go 
beyond the satisfaction of basic needs. All countries that have reached higher 
development levels in the past have increasingly used energy-intensive inputs like steel 
and cement and it is hardly plausible that this correlation will break, at least in the near 5 
future20. This impression is confirmed by an analysis of the current developing process in 
India or China (Steckel et al. 2011). Recent results from the literature (Jakob et al., 2012) 
also imply that historical patterns of energy use are repeated for developing countries and 
leapfrogging in this respect will be hard to achieve if capital accumulation will remain an 
important driver of economic growth in the future. However, assuming that scenario 10 
results are robust, we can provide a twofold interpretation:  
 
First, only with massive improvements of energy intensity will it be possible to 
dramatically reduce the energy used for capital accumulation as compared to patterns 
observed in the past. This result highlights the urgent need for drastic efficiency 15 
improvements and the simultaneous provision of latest technologies to developing 
countries. Our results imply that bringing production processes of infrastructure inputs 
towards their thermodynamic limits might allow scenario results for developing countries 
to be achievable in reality. However, considering historic trends, no dramatic 
improvements in the efficiency of these processes can be expected in the near-term. Thus, 20 
the efficiency gains implicitly assumed by the models seem to be out of reach. 
Alternatively a total or partial replacement of energy-intensive inputs by low energy 
alternatives is theoretically conceivable, e.g. by newly developed materials or methods; 
however, this option requires a significant leap of faith.  
 25 
The second interpretation is that developing countries might reach high levels of 
economic development without accumulating energy-intensive capital. Of course, for our 
analysis focusing on infrastructure it is also conceivable that necessary inputs are 
imported; however, as both steel and cement are not easy to transport, importing these 
inputs over large, trans-regional distances seems to be rather unlikely and would be 30 
unprecedented in the past. Also, it is not indicative from scenario results that energy for 
steel and cement is provided in other regions. In principle it is possible to imagine 
societies whose economic growth is not based on capital accumulation, thinking of a 
service-oriented society.  
 35 
Both interpretations imply strong underlying assumptions. Some of the results are based 
on the ReMIND-R model, which does not explicitly represent the energy needs for the 
infrastructure build-up during the development process, nor includes any explicit energy 
access targets for development. We have shown that the general tendency of very low 
levels of final energy per capita consumption is robust over a whole set of different 40 
models. Our results point to the need to spell out the details of energy demand structures 
more explicitly, in particular for the developing world. Analyzing energy needs at 
different stages of development is a promising future area of research. A possible 
outcome of calibrating IAMs to such bottom-up derivations of energy demand could be 
                                                 
20 One could even argue that climate change impacts will increase the demand for cement, due to increased 
corrosive damages at existing infrastructure (Stewart et al. 2011).  
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that current mitigation scenarios are too optimistic with respect to energy consumption in 
developing countries. Such a finding could challenge one of the most important 
conclusions derived by IAMs, namely that mitigation costs can be expected to be 
comparatively modest. In general, this analysis raises the question whether a stronger 
differentiation between developed and developing countries is necessary in IAMs.  For 5 
example, IA modelers could represent energy access policy targets in terms of a minimal 
energy input level that should be achieved to guarantee reasonable development levels. 
As of today, these questions – along with other important issues of sustainability - are not 
taken into account in most IAM analyses.  
 10 
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Appendix A: Summary statistics  
DC Observations Mean Std. Dev. Min Max 
ln steel 156 9.592039 1.785397 5.370638 12.83397 
ln cement 156 8.568707 1.09147 6.363028 11.21321 
ln GDP 156 -.1455549 .6935545 -1.414846 1.046656 
ln INV 156 -1.79617 1.002467 -3.773844 -.1269643 
ln POP 156 13.36882 .392945 12.68064 14.10544 
Table A1: Summary statistics for developing countries.  
 
OECD  Observations Mean Std. Dev. Min Max 
ln steel 78 11.66662 .2948216 11.12219 12.2184 
ln cement 78 8.940087 .5110286 8.286269 9.778831 
ln GDP 78 1.87636 .492687 .6317062 2.617282 
ln INV 78 .6208335 .4117358 -.3879909 1.325895 
ln POP 78 12.42075 .5565926 11.66828 13.10009 
Table A2: Summary statistics for OECD countries.  
 5 
Cement_GDP 
DC 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

β .7431696 .0586947 | 12.66 0.000 .6271817    .8591575 
γ 1.899377 .1173259 16.19 0.000 1.667527    2.131228 
αMENA -16.19797 1.517162 -10.68 0.000 -19.19607   -13.19988 
αCHN -16.67259 1.637676 -10.18 0.000 -19.90884   -13.43635 
αIND -17.16932 1.626985 - 10.55 0.000 -20.38444    -13.9542 
αAFR -17.36198 1.57274 -11.04 0.000 -20.46991   -14.25406 
αLAM -16.42157 1.513404 -10.85 0.000 -19.41224 -13.43089 
αOAS -16.4699 1.571013 -10.48 0.000 -19.57441   -13.36538 
Cement_INV 
DC 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

β .5523936 .0438784 12.59 0.000 .4656845    .6391026 
γ 2.019974 .1137714 17.75 0.000 1.795147      2.2448 
αMENA -16.8022 1.502156 -11.19 0.000 -19.77064   -13.83375 
αCHN -17.61418 1.61167 -10.93 0.000 -20.79903   -14.42932 
αIND -17.95363 1.604435 -11.19 0.000 -21.12419   -14.78307 
αAFR -17.88295 1.558922 -11.47 0.000 -20.96358   -14.80233 
αLAM -16.95098 1.501101 -11.29 0.000 -19.91734   -13.98462 
αOAS -17.45866 1.542884 -11.32 0.000 -20.50759   -14.40973 
Steel_GDP 
DC 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

β|                     .7518711 .1359855 5.53 0.000 .483147    1.020595 
γ 1.448846 .271824 5.33 0.000 .9116889    1.986004 
αMENA -10.18157 3.515003 -2.90 0.004 -17.12765   -3.235493 
αCHN -8.918611 3.794213 -2.35 0.020 -16.41644   -1.420782 
αIND -9.415145 3.769444 -2.50 0.014 -16.86403   -1.966262 
αAFR -11.91986 3.643768 -3.27 0.001 -19.12039   -4.719323 
αLAM -8.655937 3.506297 -2.47 0.015 -15.58481   -1.727064 
αOAS -8.91623 3.639768 -2.45 0.015 -16.10886   -1.723602 
Steel_INV 
DC 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

β|                     .4643985 .1045849 4.44 0.000 .257726     .671071 
γ 1.6638 .2711759 6.14 0.000 1.127923    2.199676 
αMENA -12.11991 3.580412 -3.39 0.001 -19.19524   -5.044572 
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αCHN -11.27925 3.841441 -2.94 0.004 -18.87041   -3.688092 
αIND -11.72973 3.824196 -3.07 0.003 -19.28681   -4.172646 
αAFR -13.99472 3.715715 -3.77 0.000 -21.33743   -6.652015 
αLAM -10.50539 3.577898 -2.94 0.004 -17.57576   -3.435026 
αOAS -11.27217 3.677489 -3.07 0.003 -18.53934 -4.005 
Cement_GDP 
OECD 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

β  -.0644126 .0456507 -1.41 0.162 -.1553943     .026569 
γ 1.521589 .2739977 5.55 0.000 .9755122    2.067665 
αEUR -10.10795 3.510918 -2.88 0.005 -17.10519   -3.110696 
αUSA -10.25885 3.34626 -3.07 0.003 -16.92794   -3.589763 
αJPN -9.148183 3.169163 -2.89 0.005 -15.46432   -2.832051 
Cement_INV 
OECD 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

β  .005888 .0433015 0.14 0.892 -.0804119    .0921878 
γ 1.212466 .2957029 4.10 0.000 .6231307    1.801801 
αEUR -6.212061 3.838023 -1.62 0.110 -13.86123    1.437109 
αUSA -6.546408 3.66286 -1.79 0.078 -13.84648    .7536607 
αJPN -5.611443 3.456714 -1.62 0.109 -12.50066    1.277777 
Steel_GDP 
OECD 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

β .096907 .0463981 2.09 0.040 .0044358    .1893782 
γ .3927311 .2784835 1.41 0.163 -.1622857     .947748 
αEUR 6.704957 3.568399 1.88 0.064 -.4068511    13.81676 
αUSA 6.303197 3.401045 1.85 0.068 -.475076    13.08147 
αJPN 6.812166 3.221048 2.11 0.038 .3926273    13.23171 
Steel_INV 
OECD 

Coef. Std. Err. t P>|t| [95% Conf. Interval] 

β .1090002 .0428477 2.54 0.013 .0236049    .1943955 
γ .2468864 .2926035 0.84 0.402 -.3362715    .8300444 
αEUR 8.730784 3.797795 2.30 0.024 1.16179    16.29978 
αUSA 8.250037 3.624467 2.28 0.026 1.026485    15.47359 
αJPN 8.616486 3.420482 2.52 0.014 1.799476     15.4335 
Table A3: Parameters from the econometric model including country-specific fixed effects.  
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Appendix B:  Sensitivity analysis of ReMIND-R results 
 
To test whether ReMIND-R results are model-specific we also look at qualitative results 
from other integrated assessment models. In Figure  scenarios from the analysis shown in 
Figure 4 (section 3.1) are compared to results from the model comparison projects 5 
ADAM (Edenhofer et al. 2010) and RECIPE (Luderer et al 2011a) (see also section 3.1). 
The BAU scenario is shown in red, the category III stabilization scenario is indicated in 
black, category II stabilization scenario is shown in blue and the category I stabilization 
scenario is shown in green. All other scenarios are shown by grey dots, of which squares 
indicate baseline scenarios, circles indicate category III and IV scenarios and diamonds 10 
indicate category I and II scenarios.  
 
a) Non-Annex I countries 

 

d) Annex I countries 

 
b) China 

 

e) USA 

 
c) India f) Europe 
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Figure B1: Comparison of ReMIND-R results with those of other models from the RECIPE and 
ADAM model comparison projects. Baseline scenarios are shown by squares, category 3&4 scenarios 
by circles and category 1&2 scenarios by diamonds. Different colors show differently ambitious 
ReMIND-R scenarios, i.e. baseline (red), category III (black), category II (blue) and category I 
(green) stabilization scenarios.  5 
 
We find that ReMIND-R does not produce qualitatively different results than other 
models that participated in both model inter-comparison projects. Obviously other models 
also find that in stabilization scenarios the correlation between energy consumption and 
economic growth is broken to an extent that might have implications for future 10 
development.  

Appendix C: Cement production in the past 
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Figure C1: Cement production per capita in selected developed countries and China from 1950 to 
2008. Data are based on Boden et al. (2011) for cement and Heston et al. (2009) for population.  15 
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